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A brief analysis of the shrinkages or shortening of the
internuclear distances in many molecular systems has been
made. Analytical expressions for the linear shrinkage and
nonlinear shrinkage have been derived in terms of the mean-
square perpendicular amplitudes. Analytical expressions for
the generalized mean-square amplitudes (mean-square parallel
amplitudes, mean-square perpendicular amplitudes, and mean
cross products) for an octahedral XYg molecule have been
given in terms of the mean-square amplitude matrices. The
linear and nonlinear shrinkages for the hexafluorides of sulfur,
selenium, tellurium, molybdenum, technetium, ruthenium,
rhodium, tungsten, rhenium, osmium, iridium, platinum,
uranium, neptunium, and plutonium have been computed at
298 °K and 500 °K, and the results have been briefly discussed.

Introduction

If the nuclei remain rigidly in their equilibrium positions or at
least confined to a straight line for a linear molecule, it is logical to
expect that the distance between the end atoms must be exactly equal
to the sum of the distance between the atom pairs comprising it. Actu-
ally, this is not the case. The nuclei deviate from their equilibrium posi-
tions by the effect of thermal motion and make a zig zag chain causing
the total distance to be apparently shortened.

As an example, Karle and Karle! experimentally determined the inter-
nuclear distances of carbon dioxide from electron diffraction studies. Their
experimentally determined value for the O~——~0O distance was not exactly
double the value for the C=O0O distance but less. Later, Bastiansen and
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his coworkers?—*, using very high-precision electron diffraction techniques
.on allene and dimethyldiacetylene in the gaseous state, observed the same
effect as that of Karle and Karle'. This shortening or the so-called ‘‘shrink-
age”’ has also been observed experimentally in other linear skeleton mole-
cules, e.g., carbon suboxide by Munthe-Kass® and Breed and his associates®,
butadiene by Traetteberg?, and carbon disulfide by Morino and Ijima®.
Though this so-called “‘shrinkage’ effect is small, it appears to be real and
is well attributed to the perpendicular modes of vibration. If this shrinkage
is neglected, linear molecules may appear slightly bent. Further, this
effect might confuse the electron diffraction studies of slightly bent mole-
cules with large amplitudes of bending vibration. Bending vibrations
will also complicate the structure determinations of linear molecules by
spectroscopic methods based on the principal moments of inertia. :

A detailed theoretical investigation has been undertaken by Morino®
on the experimental observation of shrinkage for many linear molecular
systems1-8. This shrinkage effect may be explained by allowing for intra-
molecular motion and accordingly the shrinkage may be evaluated on the
assumption of small harmonic perpendicular vibrations. According to
Morino and Hirota', the internuclear distances obtained by electron
diffraction studies depend upon the generalized mean-square amplitudes
(mean-square parallel amplitudes, mean-square perpendicular amplitudes,
and mean cross products), as well as the anharmonicity terms in the poten-
tial energy function for the perpendicular modes. The influence of anhar-
monicity factors, which have a first-order effect on the internuclear distances,
is cancelled out when the difference between the observed nonbonded
distances and the sum of the bond lengths composing them is accounted
for. In other words, the mean-square amplitudes obtained by electron
diffraction studies may be compared with those computed by spectroscopic
methods, since the anharmonicity terms of the potential energy function
for the molecular force field gives only a second-order effect on the mean-
square amplitudes. Morino and his associates! have compared their spec-
troscopic calculations with the experimental results of Bastiansen and his
coworkers?=4, and there is a good agreement between them. Later, many
investigators!? have introduced the name ‘“‘Bastionsen—Morino Shrinkage
Effect”” in their spectroscopic calculations on this aspect. On the basis
of the recent vibrational and structural data, it is aimed here to evaluate
the linear and nonlinear shrinkages of the hexafluorides of sulfur, selenium,
tellurium, molybdenum, technetium, ruthenium, rhodium, tungsten,
rhenium, osmium, iridium, platinum, uranium, neptunium, and plutonium
possessing an octahedral symmetry.

Linear Shrinkage

The equilibrium internuclear distance 7¢, which has a fundamental
importance in the analysis of molecular structure, is rarely obtained
by the usual direct measurements except for diatomic or very simple
polyatomic molecules. The measurement of microwave or infrared
absorption spectral® yields an effective 70 value from the rotational
constant for the lowest vibrational state; in some cases, isotopic sub-
stitution4 15 leads to 75 values. The mean value of an arbitrary inter-
nuclear distance, or the center of gravity of the probality distribution
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function ¢ (defined below) obtained from electron diffraction studies!®,
is not the true equilibrium internuclear distance 7¢ but rather some
distance modified by the effect of thermal motion. Let us consider
the Cartesian coordinate axes for the equilibrium position of an atom
pair i-j where the z axis is taken to be the internuclear axis. Then the
internuclear distance at any instant can be expressed in terms of small
displacements (Az;, Ays, Az; Az, Ay;, Azs) of the atoms at both ends,
and the value of an arbitrary internuclear distance 7;; is simply related
to the equilibrium distance ¢; as follows:

= [+ Ao+ B+ Mg W

When we take the average of the displacements, we may have the
following:

vl = (ry) =15 + Dag) + (Vo) (D2l + Qyg) + ... (@)

where Azj; = Az — A2y, Awy; = Avy— Az, and Ay = Ay — Ay,
Here, the linear ferm (Az) is the so-called anharmonicity term which
depends upon the cubic potential energy constants and should vanish
when the molecular vibrations are purely harmonic. The quadratic
terms (Ax2) and (Ay?), called the mean-square perpendicular amplitudes,
primarily depend upon the quadratic potential energy constants and
remain finite even if the vibrations are purely harmonic. The linear
term (Az) represents the real variation in the mean positions of the
nuclei due to the anharmonicity of the vibration, while the terms
involving the quadratic terms (Ax2) and (Ay?) come from the perpendi-
cular harmonic vibrations. If the second-order term in eq. (2) is denoted
by Ky;, then we have

1=y + Qe + Ky 3)

The value of 7%; for any internuclear distance may be obtained from
the electron diffraction studies. The Kj; term may he spectroscopically
computed from the usual standard normal coordinate analysis for
small harmonic vibrations®. The quantity r7; is not known a priori,
but it may be assumed that an approximate value would be sufficient
since Kjy; is a correction term.

The shrinkage effect for a trinuclear system in a linear asymmetrical
molecule i—j—*% (Fig. 1) is given by taking the difference between 77,
and the sum of the individual bond lengths +¢; and 74, composing it:

—8=rf— (r§ + 75r) (4)
— 8 = K — (Kg5 + Kg) (5)
— 8 = (Aay) [ r— Dal) [ 15— (D) [ 15 (6)
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Since the linear term completely vanishes in the analytical expression
for the shrinkage effect, the shrinkage begins mainly with the second-
order terms which come from the perpendicular harmonic vibrations.
For a linear asymmetrical triatomic molecule i—j—%k (Fig. 1), the
mean-square perpendicular amplitudes (Ax2) and (Ay?) are identical
for the bonded as well as nonbonded atom pairs.

Yk

Fig. 1. Equilibrium parameters and displacement coordinates for a linear
t—j—k molecule

Fig. 2. Bquilibrium parameters and displacement coordinates for a linear
t—j— molecule

The shrinkage effect for a trinuclear system in a linear symmetrical
molecule i—j—i (Fig. 2) is given by taking the difference between %
and the sum of the individual bond lengths 7%; and 7§, composing it:

— 8 =1 —(rh + 1) @
— 38 = Ky — (Kyy + Ky) ®)
—3=K;y—2Kj ®)
— 3= —2 (A | 1% (1)

Here the mean-square perpendicular amplitudes (AxZ) and (Ay2)
for the nonbonded atom pair ¢ ———— 4 vanish, thereby making K; = 0.
The mean-square perpendicular amplitudes (Ax%) and (Ay%), as in
the case of a linear asymmetrical triatomic molecule, are identical
for the bonded atom pairs. The equilibrium parameters and displace-
ments of the atoms for the two molecular systems are given in Figs. 1
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and 2. For additional information regarding the theoretical aspect
of this effect, one may refer to Morino and his coworkers!l, 17, 18 and
Cyvin and his associates12, 19-30,

Nonlinear Shrinkage

For a nonlinear asymmetrical trinuclear system i—j—% (Fig. 3),
Morino and his associates® have defined two kinds of shrinkages,

42y 5 8255

Fig. 3. Equilibrium parameters and displacement coordinates for a non-
linear +—j—Fk molecule. The dotted line is the nonbonded distance showing
the explanation of nonlinear shrinkage

namely, “natural shrinkage”, 37, and “practical shrinkage”, 3. The
analytical expressions for these two shrinkages are as follows:

— 8% = — [(15)2 + (15)2 — 27577, cos «]% (11)
— 32 = r, — (r¥; cos B 4- 1% cos ) (12)

For highly symmetrical molecules, the equilibrium value of an angle
may be correctly determined from symmetry considerations. If such
an angle is considered as « in eq. (11), the corresponding “natural
shrinkage” may be calculated from the 79 values obtained from the
electron diffraction studies. For a nonlinear asymmetrical trinuclear
system i—j—Fk (Fig. 3), where the y axis is perpendicular to the plane
of the paper, we have Ary = ry— 1y and  Argp = rf — i The
analytical expression for a natural shrinkage may be given as follows:
— 3" = rfy — (r}; cos B + 7 cos )
— (Y5 rz) (sin2 B Arf - sin?y Arf, —2 sin B siny (13)
Argy Arg) 4. ..

This expression is identical with that of the “practical shrinkage” to
a first-order approximation [see eq. (12)]. Since the shrinkage is practi-

102*
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cally a small quantity, the difference between the natural and practical
shrinkages may be ignored.

In contrast to the linear shrinkage effect, the anharmonic term
{Az) in the nonlinear shrinkage effect may not necessarily be cancelled
out; it may be obtained as a linear combination of the symmetry co-
ordinates (Sg) of the totally symmetrical vibrational modes (stretching
and angle deformation modes), since the mean values of other symmetry
coordinates vanish because of the symmetry. On the basis of simple
geometric considerations, it may be shown that the contributions
from the (Sy) of the totally symmetrical stretching modes to the an-
harmonic terms of the practical shrinkage always vanish, while those
from the (Sy) of the angle deformation modes do not vanish. Many
highly symmetrical molecules such as a linear XY molecule, a linear
symmetrical XYy molecule, a linear symmetrical X3Y¥3 molecule,
a planar symmetrical XYs molecule, a tetrahedral XY, molecule,
and an octahedral X Y molecule have no totally symmetrical deforma-
tion modes in the ground state. There are two kinds of linear shrinkages
for a linear symmetrical X9Y9 molecule. The planar symmetrical X Y3
and tetrahedral X Y4 molecules have only one nonlinear shrinkage,
whereas an octahedral XYg molecule has one linear and one non-
linear shrinkage. For these highly symmetrical molecules the computa-
tion of shrinkages becomes much easier, because the anharmonic terms
cancel out. The cancellation of anharmonic terms in highly symmetrical
nonlinear molecules is similar to that for linear molecules??, 23, 25, 27,

Shrinkages in Some Hexafluorides

A molecule or ion of the type X Y possessing an octahedral symmetry
gives rise, according to the relevant symmetry considerations and
selection rules®l, to fifteen vibrational degrees of freedom constituting
only six fundamental frequencies which are distributed under the
various irreducible representations as follows:

Aig (R; p) + Eg (R; dp) + 2 Fru (L; f}) + Fag (R; dp) + Fau (inactive)

where R, I, p, dp and || stand for Raman active, infrared active, polarized,
depolarized, and parallel, respectively. The gerade modes are only
Raman active, while the ungerade ones are only infrared active. None
of the bands observed in the Raman spectrum are observed in the
infrared absorption spectrum. This indicates that this system has a
center of symmetry. The frequency vi coming under the symmetry
species Ajg represents the totally symmetrical X—1Y stretching vibra-
tion whereas vg under the Eg species and vg under the Fyy species stand
for the asymmetrical X—7Y stretching vibrations. The frequencies v4
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coming under the Fj, species, vs under the Fgg species, and vg under
the Fy, species are essentially associated with deformation modes.
Only the first five fundamental frequencies can be directly observed
from spectroscopic methods. The lowest bending mode belonging to
the symmetry species Fg, is forbidden in both Raman and infrared
absorption spectra. Hence, the frequency vg has to be determined
either from combination tones or from specific heat data. This may
also be estimated from force constants of other related molecules
having similar chemical bonds by employing a suitable valence force

®©r
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Fig. 4. An octahedral XY molecule. The dotted lines are the nonbonded
distances showing the explanation of linear and nonlinear shrinkages

field. Hence, this frequency will be less accurate in whichever way
it is estimated. But at the same time it is strongly in favor of the octa-
hedral symmetry; otherwise, the symmetry of this system will be
strongly in favor of a planar hexagonal structure with the symmetry
point group Dgp.

Based on the theory of Bloch® and James®s, Morino and Hirotal®
extended the concept of mean-square amplitudes in the following
manner: If the direction of the line connecting the atom pair +—j at
the equilibrium configuration is considered to be the z axis and the
directions perpendicular to it and to each other are considered to be
the « and y axes, then the displacements of the two atoms in these
three directions are Az, Ay, and Az, respectively. Then A(z2) is the
mean-square parallel amplitude, (A22) and (Ay?) are the mean-square
perpendicular amplitudes, and (Ax Ay), (Ay Az), and (Az Ax) are the
mean cross products. Cyvin and many others'® 3¢ referred to these
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as the generalized mean-square amplitudes. According to Bye and
Cyvin?®®, the analytical expressions for the generalized mean-square
amplitudes for an octahedral XY molecule are given in terms of the
mean-square amplitude matrices as follows:

For the bond atom pair X—7Y:

(Az2> = (1/6) (211 4+ 235 +3 233)
(Ax? = (Ay?) = (1/8) 2aa + (1/16) Zs5 -+ (1/8) Zgs
Az Ay) = (Ay A2) = (A2 Az) = 0.

For the nonbonded atom pair ¥ ———— Y(linear):
A2y = (2/3) 211 + (4/3) Zag
(Aa?) = (Ay?) = (1/4) Zs5
Az Ayy = (Ay Az) = (Az Ax) = 0.

For the nonbonded atom pair ¥ ——~— Y (nonlinear):
(Az%) = (1/3) Z11 + (1/6) Zga + (1/2) g3 + (1/8) Zga + (1/8) 55 +
+ (1/8) Zee — (1/2) Xza
(Ax?) = (1/2) Zga + (1/2) Zgz - (1/8) Lag + (1/8) Lee — (1/2) X4
Ay% = (1/8) Zss + (1/2) Zee
Az Ay) = (Ay Az) = (Az Az) = 0.

On the basis of the recent vibrational and structural data, root-
mean-square amplitudes for both bonded and nonbonded atom pairs
were computed by Nagarajan and Adams3? for the hexafluorides of
sulfur, selenium, tellurium, molybdenum, technetium, ruthenium,
rhodium, tungsten, rhenium, osmium, iridium, platinum, uranium,
neptunium, and plutonium. The recent values of vibrational frequencies
in em~ and the internuclear distances in A for these hexafluorides®
are given in Table 1. On the basis of the principles postulated by
Oyvint?, the secular equations were constructed with help of the vibra-
tional frequencies and structural data given in Table 1 for these fifteen
hexafluorides at temperatures 298 °K and 500 °K and solved to obtain
the values of symmetrized mean-square amplitude matrices (X}. From
the evaluated values of the symmetrized mean-square amplitude matri-
ces?, the generalized mean-square amplitudes (mean-square parallel
amplitudes, mean-square perpendicular amplitudes, and mean eross
products) were computed for both bonded and nonbonded atom pairs,
and their values in A2 are given in Table 2 at the temperatures 298 °K
and 500 °K for all the fifteen hexafluorides. Here the nonbonded atom
pair F ———— F(linear) represents the distance between two peripheral
atoms opposite to each other with the central atom at the middle,
while the nonbonded atom pair F -——— F(nonlinear) represents the
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Table 2. Generalized Mean-Square Amplitudes in A2 in Some Hexafluorides
of Octahedral Symmetry *

Mean-square amplitude

Molecule Distance Symbol
T =298°K T =500°K
{Az?) 0.0017660 0.0020629
S—F {Ax?) 0.0026539 0.0033893
{Ay?) 0.0026539 0.0033893
(Az2) 0.0028202 0.0034919
SFg F ———— F{linear) {Ax?) 0.00198800 0.0026371
(Ay?) 0.0019800 0.0026371
(Az2) 0.0034127 0.0043782
F ———— F(nonlinear) {Az?) 0.0025261 0.0032191
{Ay?) 0.0047192 0.0068532
(Az2) 0.0016012 0.0019414
Se—F (Ax?) 0.0034331 0.0050557
(Ay?) 0.0034331 0.0050557
(Az2) 0.0028427 0.0035260
SeFs F ——— F(linear) {Ax?) 0.0029138 0.0041770
(Ay?) 0.0029138 0.0041770
{Az?) 0.0050011 0.0070606
F ———— F(nonlinear) {Ax?) 0.0035857 0.0050356
(By?) 0.0074271 0.0113602
(Az2) 0.0015901 0.0019666
Te—F {Ax?) 0.0052816 0.0081980
{Ay?) 0.0052816 0.0081980
(Az%) 0.0028156 0.0034783
TeFs F ———~ F(linear) (Az?) 0.0044171 0.0066763
(Ay?) 0.0044171 0.0066763
{Az2) 0.0069040 0.0102823
F ———— F(nonlinear) (Ax?) 0.0047184 0.0069793
{Ay?) 0.0123847 0.0196551
{A2?) 0.0019984 0.0026112
Mo—F (Ax?) 0.0107641 0.0173512
(Ay?®) 0.0107641 0.0173512
(Az2) 0.0028189 0.0034863
MoFg F ———— F(linear) {Ax2) 0.0043232 0.0065198
(Ay?) 0.0043232 0.0065198
(Az2) 0.0114342 0.0178544
F ———— F(nonlinear) (AzZ) 0.0093463 0.0147069
(Ay?) 0.0301923 0.0495241

* (Az Ay) = (Ay Az) = (Az Az) = 0.
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Table 2 (continued)

Mean-square amplitude

Molecule Distance Symbol
T =298°K T = 500°K
(Az?) 0.0016616 0.0020588
Te—F (Ax2) 0.0079076 0.0125779
{(Ay?) 0.0079076 0.0125779
{Az2) 0.0029103 0.0036263
TcFg F ———— F(linear) (Ax?) 0.0048587 0.0074136
(Ay?) 0.0048587 0.0074136
{Az?) 0.0109423 0.0169671
F ———— F(nonlinear) (Ax?) 0.0085784 0.0133609
(Ay?) 0.0206227 0.0334684
(Az2) 0.0016691 0.0020672
Ru—F (Ax?) 0.0063775 0.0097460
(Ay?y 0.0063775 0.0097460
(Az2) 0.0030366 0.0038208
RuFg F ———— F(linear) (Ax?) 0.0052834 0.0081231
(Ay?) 0.0052834 0.0081231
(Az2) 0.0092988 0.0139461
F ———— F(nonlinear) (Ax?) 0.0067072 0.0099625
(Ay?) 0.0146067 0.0223142
{Az?) 0.0017238 0.0021526
Rh—F (Ax?) 0.0060958 0.00954086
{Ay) 0.0060958 0.0095406
(Az2) 0.0032500 0.0041571
RhFg F ———— ¥(linear) {Ax?) 0.0057756 0.0089461
(Ay?) 0.0057756 0.0089461
{Az2) 0.0091039 0.0138793
F ———- F(nonlinear) (Ax?) 0.0062606 0.0094763
(yA2) 0.0135642 0.0216286
(Az2) 0.0016128 0.0020279
W—F (Ax?) 0.0091410 0.0146986
(Ay?) 0.0091410 0.0146986
(Az2) 0.0026853 0.0032820
WFg F ———— F(linear) {Ax?) 0.0042776 0.0064437
(Ay?) 0.0042776 0.0064437
{Az2) 0.0105041 0.0162962
¥ ———— F(nonlinear) (Ax?) 0.0084350 0.0131790

(Ay?) 0.0256411 0.0418891
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Table 2 (continued)

Mean-square amplitude

Molecule Distance Symbol
T =298°K T = 500°K
(Az?) 0.0015327 0.0018952
Re—F (Ax?) 0.0078628 0.0125540
(y A%y 0.0078628 0.0125540
{Az2) 0.0027293 0.0033490
ReFsg F ——— F(linear) {Ax?) 0.0049157 0.0075088
(Ay?) 0.0049157 0.0075088
(Az2) 0.0097803 0.0150223
F ———— F(nonlinear) (Ax?) 0.0073864 0.0113645
(Ay?) 0.0201785 0.0327231
(Az2) 0.0014923 0.0018294
Os—F {Az?) 0.0057404 0.0089973
{(Ay?) 0.0057404 0.0089973
(Az2) 0.0027722 0.0034130
OsFs F ———— F(linear) (Ax2) 0.0055202 0.0085189
(Ay?) 0.0055202 0.0085189
{Az2) 0.0080232 0.0121046
F ———— F(nonlinear) (Ax?) 0.0053138 0.0079223
{(Ay?) 0.0122105 0.0193600
(Az?) 0.0015123 0.0018591
Ir—F (Az?) 0.0056756 0.0088902
(Ay?) 0.0056756 0.0088902
(Az2) 0.0029037 0.0036152
IrFg F ————F(linear) (Ax?) 0.0058522 0.0090743
(Ay®) 0.0058522 0.0090743
(Az2) 0.0082804 0.0125220
F ———— F(nonlinear) {Ax?) 0.0054049 0.0080628
(Ay?) 0.0122917 0.0194955
(Az?) 0.0016204 0.0020294
Pt—F {Ax?) 0.0059237 0.0093050
(Ay?) 0.0059237 0.0093050
(#2A) 0.0031765 0.0040401
PtFs F ———— F(linear) {Ax?) 0.0069761 0.0109552
(Ay?) 0.0069761 0.0109552
(A22) 0.0086419 0.0131136
F ———~ F(nonlinear) (Ax?y 0.0052133 0.0077293

(Ay2) 0.0124474 0.0197550
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Table 2 (continued)

Mean-square amplitude

Molecule Distance Symbol
T =298°K T = 500°K
{Az2) 0.0018082 0.0023318
U—F (Az®) 0.0108284 0.0175387
(Ay®) 0.0108284 0.0175387
{Az2) 0.0035494 0.0046388
UFs F ———- F(linear) (Ax?) 0.0097131 0.0155406
(Ay?) 0.0097131 0.01554086
(Az2) 0.0143479 0.0226695
F ———- F(nonlinear) {Ax?) 0.0096590 0.0151650
{Ay?) 0.0237967 0.0387846
(Az2) 0.0018446 0.0023917
Np—F (Ax?) 0.0089810 0.0144425
(Ay?) 0.0089810 0.0144425
(Az2) 0.0035571 0.0046494
NpFs F ———— F(linear) (Ax?) 0.0092001 0.0146809
(Ay?) 0.0092001 0.0146809
(Az2) 0.0134748 0.0211939
F ———— F(nonlinear) (Ax?) 0.0090259 0.0140935
(Ay?) 0.0189751 0.0306978
{Az2) 0.0018737 0.0024374
Pu—F (Ax?) 0.0083352 0.0133611
{Ay?) 0.0083352 0.0133611
(Az2) 0.0036930 0.0048661
PuFg F ———— F(linear) {(Ax?) 0.0089599 0.0142783
(Ay?) 0.0089589 0.0142783
(Az2) 0.0125715 0.0196990
F ——~——F(nonlinear) (Ax?) 0.0082371 0.0127923
{Ay?) 0.0174690 0.0281723

distance between two peripheral atoms adjacent to each other. The
mean cross products for both bonded and nonbonded atom vanish
by symmetry of the molecular system, and hence they are not listed
in Table 2. While the mean-square perpendicular amplitudes are
identical for the bonded atom pair and nonbonded atom pair ¥ ——— F-
(linear), they are different for the nonbonded atom pair F ——— F(non-
linear) by symmetry of the molecular system (Table 2). In the case
of the nonbonded atom pair F ——-— F(nonlinear), the mean-square
perpendicular amplitude (Ay?) is always greater than the mean-square
perpendicular amplitude (Ax?2). Further, the mean-square parallel
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amplitudes (Az2) are always less than the mean-square perpendicular
amplitudes (Ax?) and {Ay?) for both the bonded and nenbonded atom
pairs.

In the case of an octahedral X Y molecule, the analytical expressions
for the linear and nonlinear shrinkages are, according to earlier
studies?® 2, given as follows:

Sy_—__y(linear) = (1/4 R) (Zgq + Zes)

3y_——_y(nonlinear) = (Vﬁf/S R) (— g2 — X3 + 3/4 Zug + T3q +
+ 1/4 255 — X34)

Table 3. Shrinkages of the Internuclear Distances in A for Some Hexafluorides

of Octahedral Symmetry
Sp———_p(linear) 3Fr———_r(nonlinear)
Molecule
T =298°K T = 500°K T=298°K T = 500°K
SFe 0.00273 0.00346 0.00075 0.00078
SeFg 0.00318 0.00472 0.00057 0.00080
TeFs 0.00454 0.00710 0.00077 0.00118
MoFs 0.01058 0.01718 0.00094 0.00100
TcFg 0.00723 0.01159 0.00046 0.00067
RuFs 0.00539 0.00822 0.00079 0.00126
RhFg 0.00497 0.00780 0.00086 0.00133
WEFg 0.00882 0.01430 0.00048 0.00072
ReFg 0.00691 0.01112 0.00072 0.00113
OsF¢ 0.00476 0.00750 0.00105 0.00168
IrFg 0.00460 0.00722 0.00097 0.00154
PtFg 0.00457 0.00718 0.00117 0.00188
UFs 0.00843 0.01369 0.00175 0.00287
NpFs 0.00675 0.01240 0.00141 0.00232
PuFg 0.00618 0.00993 0.00137 0.00224

where R stands for the z—y distance at the equilibrium configuration.
The calculation of shrinkages need only the values of mean-square
perpendicular amplitudes and internuclear distances at the equilibrium
configuration. Very accurate values of the internuclear distances at
the equilibrium configuration are, however, not required. Approximate
values from microwave studies or X-ray diffraction studies or any
other theoretical or experimental methods, if the results of electron
diffraction studies are not available, will be quite sufficient as the
second-order term involving the calculation of the shrinkage is only
a minor correction term. The linear and nonlinear shrinkages were
calculated at 298 °K and 500 °K and their values in A are given in
Table 3 for all the fifteen hexafluorides. Although the shrinkages
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due to the perpendicular displacements of the atom pairs for all the
molecules studied here appear small, they are real. They are to be
added to the observed nonbonded distances from electron diffraction
studies at the appropriate temperatures in order to get the real non-
bonded distances of the molecule. Although the electron diffraction
studies have been undertaken for a few of these molecules, the values
of linear and nonlinear shrinkages have not yet been reported for any
of these molecules. However, the results of the present study would
be useful in the future for the interpretation of the results of electron
diffraction studies in determining the shrinkages of chemical bonds
for these hexafluorides.
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