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A brief analysis of the shrinkages or shortening of the 
internuclear distances in many molecular systems has been 
made. Analytical expressions for the linear shrinkage and 
nonlinear shrinkage have been derived in terms of the mean- 
square perpendicular amplitudes. Analytical expressions for 
the generalized mean-square amplitudes (mean-square parallel 
amplitudes, mean-square perpendicular amplitudes, and mean 
cross products) for an octahedral XY6 molecule have been 
given in terms of the mean-square amplitude matrices. The 
linear and nonlinear shrinkages for the hexafluorides of sulfur, 
selenium, tellurium, molybdenum, technetium, ruthenium, 
rhodium, tungsten, rhenium, osmium, iridium, platinum, 
uranium, neptunium, and plutonium have been computed at 
298 ~ and 500 ~ and the results have been briefly discussed. 

Introduction 

If the nuclei remain rigidly in their equilibrium positions or at 
least confined to a straight line for a linear molecule, it is logical to 
expect that the distance between the end atoms must be exactly equal 
to the sum of the distance between the atom pairs comprising it. Actu- 
ally, this is not the case. The nuclei deviate from their equilibrium posi- 
tions by the effect of thermal motion and make a zig zag chain causing 
the total distance to be apparently shortened. 

As an example,  Karle and Karle 1 exper imenta l ly  de te rmined  the  inter-  
nuclear  dis tances of carbon dioxide f rom electron diffract ion studies. Their  
exper imenta l ly  de te rmined  va lue  for the  0 . . . .  0 dis tance was no t  exact ly  
double the  value  for the  C = O  distance bu t  less. Later ,  Bastianssn and 

* This paper  is based on a thesis to be submi t t ed  by  Thomas S. Adams 
to the  Gradua te  School of the  Valdos ta  S ta te  College in par t ia l  fulf i l lment  
of the  requ i rements  for the  degree of Master  of Science. 
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his coworkers z-~, using very high-precision electron diffraction techniques 
o n  allene and dimethyldiacetylene in the gaseous state, observed the same 
effect as that  of K a t i e  and K a r l e  1. This shortening or the so-called "shrink- 
age" has also been observed experimentally in other linear skeleton mole- 
cules, e.g., carbon suboxide by M u n t h e - K a s s  ~ and Breed  and his associates 6, 
butadiene by Traet teberg ~, and carbon disulfide by M e r i n o  and l j i m a  s. 
Though this so-called "shrinkage" effect is small, it appears to be real and 
is well at tr ibuted to the perpendicular modes of vibration. If this shrinkage 
is neglected, linear molecules may appear slightly bent. Further, this 
effect might confuse the electron diffraction studies of slightly bent mole- 
cules with large amplitudes of bending vibration. Bending vibrations 
will also complicate the structure determinations of linear molecules by 
spectroscopic methods based on the principal moments of inertia. 

A detailed theoretical investigation has been undertaken by M e r i n o  ~ 
on the experimental observation of shrinkage for many linear moleeular 
systems l-s. This shrinkage effect may be explained by allowing for intra- 
molecular motion and accordingly the shrinkage may be evaluated on the 
assumption of small harmonic perpendicular vibrations. According to 
M e r i n o  and H i r o t a  1~ the internuclear distances obtained by electron 
diffraction studies depend upon the generalized mean-square amplitudes 
(mean-square parallel amplitudes, mean-square perpendicular amplitudes, 
and mean cross products), as well as the anharmonicity terms in the poten- 
tial energy function for the perpendicular modes. The influence of anhar- 
monieity factors, which have a first-order effect on the internuclear distances, 
is cancelled out when the difference between the observed nonbonded 
distances and the sum of the bond lengths composing them is accounted 
for. In  other words, the mean-square amplitudes obtained by electron 
diffraction studies may be compared with those computed by spectroscopic 
methods, since the anharmonieity terms of the potential energy function 
for the molecular force field gives only a second-order effect on the mean- 
square amplitudes. M e r i n o  and his associates 11 have compared their spec- 
troscopic calculations with the experimental results of B a s t i a n s e n  and his 
eoworkers 2-~, and there is a good agreement between them. Later, many 
investigators 12 have introduced the name " B a s t i a n s e n - - M o r i n o  Shrinkage 
Effect" in their spectroscopic eMculations on this aspect. On the basis 
of the recent vibrational and strudtural data, it is aimed here to evaluate 
the linear and nonlinear shrinkages of the hexafluorides of sulfur, selenium, 
tellurium, molybdenum, technetium, ruthenium, rhodium, tungsten, 
rhenium, osmium, iridium, platinum, uranium, neptunium, and plutonium 
possessing an oetahedral symmetry. 

L i n e a r  S h r i n k a g e  

The equi l ibr ium internuclear  distance re, which has a fundamen ta l  
importance in  the analysis of molecular structure,  is rarely obta ined 
by  the usual  direct measurements  except for diatomic or very simple 
polyatomic molecules. The measurement  of microwave or infrared 
absorpt ion spectra is yields an effective r 0 value from the ro ta t ional  
cons tant  for the lowest v ibra t ional  s tate;  in  some cases, isotopic sub- 
sti tutionl~, 15 leads to r ~ values. The mean  value of an arb i t ra ry  inter-  
nuclear distance, or the center of gravi ty  of the p robah ty  dis t r ibut ion 
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function rg (defined below) obtained from electron diffraction studies 16, 
is not the true equilibrium internuclear distance r e but rather some 
distance modified by the effect of thermal motion. Let us consider 
the Cartesian coordinate axes for the equilibrium position of an atom 
pair i - j  where the z axis is taken to be the internuclear axis. Then the 
internuclear distance at any instant can be expressed in terms of small 
displacements (Axi, Aye, Azi; Axj, Ayj, Azj) of the atoms at both ends, 
and the value of an arbitrary internuclear distance rlj is simply related 
to the equilibrium distance r~0. as follows: 

When we take the average of the displacements, we may have the 
following : 

ra.._ e e ~ A 2 ~ - -  (r i j}  -~  ri j  ~ -  (Azlj} T ( l f f2ri j )  ((Axe} ~- (Yij}) -}- . . .  (2) 

where Azgi  = A z i  - -  Az] ,  A x i j  ~ -  A x i  - -  A x ] ,  and Ayig = A y i  - -  A y i .  

Here, the linear term (Az) is the so-called anharmonicity term which 
depends upon the cubic potential energy constants and should vanish 
when the molecular vibrations are purely harmonic. The quadratic 
terms (Ax 2} and (Aye}, called the mean-square perpendicular amplitudes, 
primarily depend upon the quadratic potential energy constants and 
remain finite even if the vibrations are purely harmonic. The linear 
term (Az} represents the real variation in the mean positions of the 
nuclei due to the anharmonicity of the vibration, while the terms 
involving the quadratic terms (Ax 2} and (Ay ~} come from the perpendi- 
cular harmonic vibrations. If the second-order term in eq. (2) is denoted 
by Kij, then we have 

r~ = rij + (Az~j) + K~s (3) 

The value of r~j for any internuclear distance may be obtained from 
the electron diffraction studies. The K~ term m~y be spectroscopically 
computed from the usual standard normal coordinate analysis for 
small harmonic vibrations 1~ The quanti ty r~j is not known a priori, 
but it may be assumed that  an approximate value would be sufficient 
since Kis" is a correction term. 

The shrinkage effect for a trinuclear system in a linear asymmetrical 
molecule i - - j - - k  (Fig. 1) is given by taking the difference between r~k 
and the sum of the individual bond lengths r~j and r~ composing it: 

- -  ~ = ~ , - -  (~J + G )  (4) 

- -  ~ : Ki~ - -  (K~j -~ Kjk)  (5) 

- -  (Axis) 1 ~j - -  (Ax~k) t r2~ (6) 
~Ionatshefte ffir Chemie, Bd. 104[6 102 
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Since the linear term completely vanishes in tlie analytical expression 
for the shrinkage effect, the shrinkage begins mainly with the second- 
order terms which come from the perpendicular harmonic vibrations. 
For a linear asymmetrical triatomic molecule i - - j - - l c  (Fig. 1), the 
mean-square perpendicular amplitudes (Ax ~) and (Ay 2} are identical 
for the bonded as well as nonbonded atom pairs. 

> 
z k 

Fig. 1. Equilibrium parameters and displacement coordinates for a linear 
i - - j - - k  molecule 

> > 
z i zj 

> 
zs 

Fig. 2. Equilibrium parameters and displacement coordinates for a linear 
i - - j - - i  molecule 

The shrinkage effect for a trinuelear system in a linear symmetrical 
molecule i - - j - - i  (Fig. 2) is given by taking the difference between r~i 
and the sum of the individual bond lengths r~ and r~i composing it: 

- -  ~ = r~j - -  (r~  + rJ~) (7 )  

- -  8 = Kfl  - -  (Ki; + K~j) (8) 

- -  8 = K u  - -  2 K j l  (9)  

s o ( t o )  - -  a = - -  2 ( ( A x e )  / ri~ 

Here the mean-square perpendicular amplitudes (Ax~i} and (Ayi~ } 
for the nonbonded atom pair i . . . .  i vanish, thereby making Ku = 0. 
The mean-square perpendicular amplitudes (Ax~i} and (Aye}, as in 
the case of a linear asymmetrical triatomie molecule, are identical 
for the bonded atom pairs. The equilibrium parameters and displace- 
ments of the atoms for the two molecular systems are given ia Figs. 1 
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and 2. For additional information regarding the theoretical aspect 
of this effect, one m~y refer to Mor ino  and his coworkers n, 17, 18 and 
Cyv in  and his associates 12, 19-s0 

N o n l i n e a r  S h r i n k a g e  

For a nonlinear asymmetrical  trinuelear system i - - j - - k  (Fig. 3), 
Mor ino  and his associates is have defined two kinds of shrinkages, 

Fig. 3. Equilibrium parameters and displacement coordinates for a non- 
linear i-~'--/c molecule. The dotted line is the nonbonded distance showing 

the explanalbion of nonlinear shrinkage 

namely, "natural  shrinkage", 3n, and "practical shrinkage", 3p. The 
analytical expressions for these two shrinkages are as follows: 

= + 2 c o s  (11)  

- -  ~P : rika __ (r~j cos ~ -~- rj~ cos y) (12) 

For highly symmetrical  molecules, the equilibrium value of an angle 
may  be correctly determined from symmetry  considerations. I f  such 
an angle is considered as ~ in eq. (11), the corresponding "natural  
shrinkage" may  be calculated from the ra values obtained from the 
electron diffraction studies. For a nonlinear asymmetrical  trinuclear 
system i - - j - - k  (Fig. 3), where the y axis is perpendicular to the plane 

= ~ and Arj~ a e of the paper, we have Ar~j r i j -  rij = r j ~ -  rjk. The 
analytical expression for a natural  shrinkage may  be given as follows: 

- - ( � 8 9  (13) 
Ar~ i Arj~) + . . . 

This expression is identical with tha t  of the "practical shrinkage" to 
a first-order approximation [see eq. (12)]. Since the shrinkage is practi- 

102" 
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cally a small quantity, the difference between the natural and practical 
shrinkages may be ignored. 

In contrast to the hnear shrinkage effect, the anharmonic term 
<Az) in the nonlinear shrinkage effect may not necessarily be cancelled 
out; it may be obtained as a linear combination of the symmetry co- 
ordinates (S~) of the totally symmetrical vibrational modes (stretching 
and angle deformation modes), since the mean values of other symmetry 
coordinates vanish because of the symmetry. On the basis of simple 
geometric considerations, it may be shown that  the contributions 
from the (S~} of the totally symmetrical stretching modes to the an- 
harmonic terms of the practical shrinkage always vanish, while those 
from the (S$) of the angle deformation modes do not vanish. Many 
highly symmetrical molecules such as a linear X Y2 molecule, a linear 
symmetrical X2Y2 molecule, a linear symmetrical XaY2 molecule, 
a planar symmetrical X Ya molecule, a tetrahedral X Y4 molecule, 
and an oetahedral X Ys molecule have no totally symmetrical deforma- 
tion modes in the ground state. There are two kinds of linear shrinkages 
for a linear symmetrical X2 Y2 molecule. The planar symmetrical X Ya 
and tetrahedral X Y4 molecules have only one nonlinear shrinkage, 
whereas an octahedral X Y6 molecule has one linear and one non- 
hnear shrinkage. For these highly symmetrical molecules the computa- 
tion of shrinkages becomes much easier, because the anharmonic terms 
cancel out. The cancellation of anharmonic terms in highly symmetrical 
nonlinear molecules is similar to that  for linear molecules ~, a3, 25, 27 

S h r i n k a g e s  in Some  H e x a f l u o r i d e s  

A molecule or ion of the type X Y6 possessing an oetabedral symmetry 
gives rise, according to the relevant symmetry considerations and 
selection rules 81, to fifteen vibrational degrees of freedom constituting 
only six fundamental frequencies which are distributed under the 
various irreducible representations as follows: 

Alg (R; p) + Eg (1~; dp) ~- 2 Flu (I; ]l) -[- Fag (1~; dp) -~ F2u (inactive) 

where I~, I, p, dp and II stand for Raman active, infrared active, polarized, 
depolarized, and parallel, respectively. The gerade modes are only 
Raman active, while the ungerade ones are only infrared active. None 
of the bands observed in the Raman spectrum are observed in the 
infrared absorption spectrum. This indicates that  this system has a 
center of symmetry. The frequency 91 coming under the symmetry 
species Alg represents the totally symmetrical X - - Y  stretching vibra- 
tion whereas 92 under the Eg species and ~a under the Flu species stand 
for the asymmetrical X - - Y  stretching vibrations. The frequencies ~4 
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coming under the Flu species, v5 under the F2g species, and v6 under 
the F2u species are essentially associated with deformation modes. 
Only the first five fundamental  frequencies can be directly observed 
from spectroscopic methods. The lowest bending mode belonging to 
the symmetry  species ~F2u is forbidden in both l~aman and infrared 
absorption spectra. Hence, the frequency v6 has to be determined 
either from combination tones or from specific heat data. This may  
also be estimated from force constants of other related molecules 
having similar chemical bonds by employing a suitable valence force 

-( 

! 
r 
I 
I 
I 

Fig. 4. An octahedral X Y s  molecule. The dotted lines are the nonbonded 
distances showing the explanation of linear and nonlinear shrinkages 

field. Hence, this frequency will be less accurate in whichever way 
it is estimated. But  at  the same time it is strongly in favor of the octa- 
hedral symmetry ;  otherwise, the symmetry  of this system will be 
strongly in favor of a planar hexagonal structure with the symmetry  
point group Dsh. 

Based on the theory of Bloch s2 and James s3, Morino and Hi~vta 1~ 
extended the concept of mean-square amplitudes in the following 
manner:  I f  the direction of the line connecting the atom pair i - - j  at 
the equilibrium configuration is considered to be the z axis and the 
directions perpendicular to it and to each other are considered to be 
the x and y axes, then the displacements of the two atoms in these 
three directions are Ax, Ay, and Az, respectively. Then A(z 2} is the 
mean-square parallel amplitude, (Ax 2} and (&y2} are the mean-square 
perpendicular amplitudes, and (Ax Ay}, (Ay Az}, and (Az Ax} are the 
mean cross products. Cyvin and many  others x2, 3a referred to these 
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as the generalized mean-square amplitudes. According to Bye and 
Cyvin 29, the analytical expressions for the generalized mean-square 
amplitudes for an octahedral X Ys molecule are given in terms of the 
mean-square amplitude matrices as follows: 

For the bond atom pair X - -  Y: 

<Az2> = (1/6) (211 + 2 222 + 3 Z83) 
<Ax2> : <hy2> = (1/8) E44 + (1/16) E55 + (1/8) Z66 
<hx Ay} = (hy Az} = (Az Ax} = 0. 

For the nonbonded atom pair Y . . . .  Y(linear) : 

<Az z} = (2/3) •11 -}- (4/3) Z22 
<axe> -- <Ay2> = (1/4) 255 
<Ax Ay> = <Ay hz} = <hz Ax> = 0. 

For the nonbonded atom pair Y . . . .  Y(nonlinear) : 

<Az 2} = (1/3) El l  -~- (1/6) E22 ~- (1/2) E3a ~- (1/8) E44 "~- (1/8) E55 -~- 
+ (1/8) Z~6 - -  (1/2) Zs4 

(Ax 2) : (1/2) E22 -~" (1/2) Ea3 ~- (1/8) E44 -I- (1/8) E66 - -  (1/2) Ea4 
<Ay 2) = (1/8) E55 -t- (1/2) E66 
<Ax Ay} = <hy hz} = (hz hx) = 0. 

On the basis of the recent vibrational and structural data, root- 
mean-square amplitudes for both bonded and nonbonded atom pairs 
were computed by Nagarajan and Adams 35 for the hexafluorides of 
sulfur, selenium, tellurium, molybdenum, technetium, ruthenium, 
rhodium, tungsten, rhenium, osmium, iridium, platinum, uranium, 
neptunium, and plutonium. The recent values of vibrational frequencies 
in cm -1 and the internuclear distances in ~ for these hexafluorides s5 
are given in Table 1. On the basis of the principles postulated by 
Cyvin 1~, the secular equations were constructed with help of the vibra- 
tional frequencies and structural data given in Table 1 for these fifteen 
hexafluorides at temperatures 298 ~ and 500 ~ and solved to obtain 
the values of symmetrized mean-square amplitude matrices (E). From 
the evaluated values of the symmetrized mean-square amplitude matri- 
ces 35, the generalized mean-square amplitudes (mean-square parallel 
amplitudes, mean-square perpendicular amplitudes, and mean cross 
products) were computed for both bonded and nonbonded atom pairs, 
and their values in A 2 are given in Table 2 at the temperatures 298 ~ 
and 500 ~ for all the fifteen hexafluorides. Here the nonbonded atom 
pair F . . . .  F(]inear) represents the distance between two peripheral 
atoms opposite to each other with the central atom at the middle, 
while the nonbonded atom pair F . . . .  F(nonlinear) represents the 
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Tablo 2. Generalized Mean-Square Amplitudes in 1~ in Some Hexa]luorides 
o] Octahedral Symmetry * 

Molecule Distance Symbol  
Mean-square ampl i tude  

T = 298 ~  T = 500 ~  

<Aze> 
S - - F  <Axe> 

<Ay 2) 

<Aze> 
SF6 F . . . .  F(l inear)  (Ax e } 

(Ay 2) 

(Az 2) 
F . . . .  F(nonl inear)  (Ax e } 

(Aye) 

(Az e) 
S e - - F  (hx ~) 

(Ay e ) 

(hz 2} 
SeF6 F . . . .  F(linear) (Ax 2} 

<Aye> 

(Az 2} 
F . . . .  ~ '(nonlinear) (Ax e } 

(Aye) 

(hz 2) 
T e - - F  (Ax 2) 

(Ay e } 

(hz e) 
TeF6 F . . . .  F(l inear)  (Ax ~} 

(Ay 2} 

(Aze) 
F . . . .  •(nonlinear) (Ax u) 

(Aye) 

(Aze) 
M o - - F  (Ax e ) 

(Ay 2} 

(Az~) 
MoF~ F . . . .  F(linear) (Ax e} 

(Ay 2) 

(Az~) 
F . . . .  F(nonl inear)  (Ax ~} 

(Ay 2) 

* (Ax Ay) = (Ay Az) ~ (Az Ax} = 0. 

0.0017660 0.0020629 
0.0026539 0.0033893 
0.0026539 0.0033893 

0.0028202 0.0034919 
0.0019800 0.0026371 
0.0019800 0.0026371 

0.0034127 0.0043782 
0.0025261 0.0032191 
0.0047192 0.0068532 

0.0016012 0.0019414 
0.0034331 0.0050557 
0.0034331 0.0050557 

0.0028427 0.0035260 
0.0029138 0.0041770 
0.0029138 0.0041770 

0.0050011 0.0070606 
0.0035857 0.0050356 
0.0074271 0.0113602 

0.0015901 0.0019666 
0.0052816 0.0081980 
0.0052816 0.0081980 

0.0028156 0.0034783 
0.0044171 0.0066763 
0.0044171 0.0066763 

0.0069040 0.0102823 
0.0047184 0.0069793 
0.0123847 0.0196551 

0.00i9984 0.0026112 
0.0107641 0.0173512 
0.0107641 0.0173512 

0.0028189 0.0034863 
0.0043232 0.0065198 
0.0043232 0.0065198 

0.0114342 0.0178544 
0.0093463 0.0147069 
0:0301923 0.0495241 
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Molecule Dis tance  Symbol  
Mean-square  ampl i tude  

T = 298 ~ T =  500 ~ 

TcF~ 

l~uF8 

RhF6 

WF6 

(Az2} 
T e - - F  (Ax e} 

(Ay 2} 

(Az 2} 
F . . . .  F(l inear)  (Ax 2} 

(Ay 2) 

(hz2) 
F . . . .  F(nonl inear)  (Ax 2) 

(Ay 2} 

(Az 2) 
l%u F (Ax 2) 

(Ay 2 } 

(Az2) 
F . . . .  F(l inear)  (Ax 2} 

(Ay 2} 

(Az2) 
F . . . .  F (noDAinear) (Ax 2 } 

(Ay 2) 

(Az2) 
R h - - F  (Ax2) 

(Ay 2} 

(hz 2} 
F . . . .  F(l inear)  (Ax ~} 

(Ay 2 } 

(Az2} 
F . . . .  F(nonlinear)  (Ax e } 

(yA 2} 

(Az~} 
W - - F  (Ax 2 } 

(Ay 2) 

(Az2} 
F . . . .  F( l iaear)  (Ax 2 } 

(Ay 2) 

{Az2) 
F . . . .  F(nonl inear)  (Ax 2} 

(Ay 2) 

0.0016616 0.0020588 
0.0079076 0.0125779 
0.0079076 0.0125779 

0.0029103 0.0036263 
0.0048587 0.0074136 
0.0048587 0.0074136 

0.0109423 0.0169671 
0.0085784 0.0133609 
0.0206227 0.0334684 

0.0016691 0.0020672 
0.0063775 0.0097460 
0.0063775 0.0097460 

0.0030366 0.0038208 
0.0052834 0.0081231 
0.0052834 0.0081231 

0.0092988 0.0139461 
0.0067072 0.0099625 
0.0146067 0.0223142 

0.00i7238 0.0021526 
0.0060958 9.0095406 
0.0060958 0.0095406 

0.0032500 0.0041571 
0.0057756 0.0089461 
0.0057756 0.0089461 

0.0091039 0.0138793 
0.0062606 0.0094763 
0.0135642 0.0216286 

0.0016128 0.0020279 
0.0091410 0.0146986 
0.0091410 0.0146986 

0.0026853 0.0032820 
0.0042776 0.0064437 
0.0042776 0.0064437 

0.0105041 0.0162962 
0.0084350 0.0131790 
0.0256411 0.0418891 



1618 

Table 2 (continued) 

G. Naga ra j an  and  T. S. Adams:  

Molecule Distance Symbol  
Mean-square ampl i tude  

T = 298 ~  T = 500 ~  

ReF6 

OsF6 

IrF6 

PtF6 

R e - - F  

F . . . .  F(linear) 

F . . . .  F(nonl inear)  

Os---F 

F . . . .  F(l inear)  

F . . . .  F(nonl inear)  

I r - - -F  

F . . . .  F(l inear)  

F . . . .  F(nonl inear)  

P t - - F  

F . . . .  F(linear) 

F . . . .  F(nonl inear)  

(Az 2) 0.0015327 0.0018952 
(Ax ~> 0.0078628 0.0125540 
(yA~> 0.0078628 0.0125540 

(Az~) 0.0027293 0.0033490 
<Ax ~} 0.0049157 0.0075088 
(Ay 2> 0.0049157 0.0075088 

(Az 2) 0.0097803 0.0150223 
(Ax 2> 0.0073864 0.0113645 
(Ay 2> 0.0201785 0.0327231 

(Az 2} 0.0014923 0.0018294 
(AxU} 0.0057404 0.0089973 
(Ay 2} 0.0057404 0.0089973 

(Az 2> 0.0027722 0.0034130 
(Ax 2> 0.0055202 0.0085189 
(Ay 2> 0.0055202 0.0085189 

(Az 2> 0.0080232 0.0121046 
(Ax 2> 0.0053138 0.0079223 
(Ay ~) 0.0122105 0.0193600 

(Az 2> 0.0015123 0.0018591 
(Ax 2> 0.0056756 0.0088902 
(Aye> 0.0056756 0.0088902 

(Az 2> 0.0029037 0.0036152 
(Ax 2} 0.0058522 0.0090743 
(Ay ~> 0.0058522 0.0090743 

(Az 2} 0.0082804 0.0125220 
(Ax 2} 0.0054049 0.0080628 
(Aye} 0.0122917 0.0194955 

(Az 2) 0.0016204 0.0020294 
(Axe) 0.0059237 0.0093050 
(Ay 2) 0.0059237 0.0093050 

(z2A} 0.0031765 0.0040401 
(Ax 2} 0.0069761 0.0109552 
(Ay 2) 0.0069761 0.0109552 

<Az 2} 0.0086419 0.0131136 
(Ax ~} 0.0052133 0.0077293 
(Ay 2} 0.0124474 0.0197550 
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Molecule Distance Symbol 
Mean-square amplitude 

T =  298 ~ T =  500 ~ 

(Az 2) 
U - - F  (Ax 2 ) 

(Ay 2) 

<Az2> 
UF6 F . . . .  F(linear) (Ax 2) 

(Ay 2) 

(Az 2> 
F . . . .  F(nonlinear) (Ax 2) 

(Ay 2) 

(Az2> 
N p - - F  (Ax 2) 

(Ay2) 

(hz~) 
NpF6 F . . . .  F(linear) (Ax 2> 

(Ay 2) 

(hz 2> 
F . . . .  F(nonlinear) (Ax 2) 

(Ay ~> 

(Az 2) 
Pu F (Axe> 

(Aye) 

(hz2) 
PuF6 F . . . .  F(linear) (Ax2> 

<Ay 2) 

<Az2> 
F . . . .  F(nonlinear) (Ax2) 

(Ay2) 

0.0018082 0.0023318 
0.0108284 0.0175387 
0.0108284 0.0175387 

0.0035494 0.0046388 
0.0097131 0.0155406 
0.0097131 0.0155406 

0.0143479 0.0226695 
0.0096590 0.0151650 
0.0237967 0.0387846 

0.0018446 0.0023917 
0.0089810 0.0144425 
0.0089810 0.0144425 

0.0035571 0.0046494 
0.0092001 0.0146809 
0.0092001 0.0146809 

0.0134748 0.0211939 
0.0090259 0.0140935 
0.0189751 0.0306978 

0.0018737 0.0024374 
0.0083352 0.0133611 
0.0083352 0.0133611 
0.0036930 0.0048661 
0.0089599 0.0142783 
0.0089599 0.0142783 

0.0125715 0.0196990 
0.0082371 0.0127923 
0.0174690 0.0281723 

distance between two peripheral a toms adjacent  to each other. The 
mean  cross products  for bo th  bonded and nenbonded  a tom vanish 
by  s y m m e t r y  of the molecular system, and hence they  are no t  listed 
in Table 2. While the mean-square perpendicular ampli tudes are 
identical for the bonded a tom pair and nonbonded a tom pair F . . . .  F- 
(linear), they  are different for the nonbonded a tom pair F . . . .  F(non- 
linear) by  s y m m e t r y  of the molecular system (Table 2). I n  the case 
of the nonbonded a tom pair F . . . .  F(nonlinear), the mean-square 
perpendicular  ampli tude (Ay 2} is always greater than  the mean-square 
perpendicular ampli tude (Ax2}. Further ,  the mean-square parallel 
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ampl i tudes  (Az 2} are a lways  tess t h a n  the  mean-square  perpendicu la r  
ampl i tudes  (Ax 2) and  <Ay 2) for bo th  the  bonded  and  nonbonded  a tom 
pairs.  

I n  the  case of an oc tahedra l  X Y6 molecule, the  ana ly t i ca l  expressions 
for the  l inear  and  nonl inear  shrinkages are, according to  earl ier  
s tudies s0, ~9, given as follows : 

~g . . . .  r ( l inear)  = (1/4 R) (•44 ~- E66) 

~ r  . . . .  r (nonl inear )  ---- (V2/8 R) ( - -  E~2 - -  E3a + 3/4 E44 + E34 @ 
+ 1/4 Z55 - -  Z34) 

Table 3. Shrinkages o/the Internuclear Distances in • /or Some Hexa/luorides 
o/Octahedral Symmetry 

Molecule 
3F .... •(linear) 3F .... F(nonlinear) 

T = 298 OK T =  500 oK T = 298 OK T = 500 oK 

SF6 0.00273 0.00346 0.00075 0.00078 
SeF6 0.00318 0.00472 0.00057 0.00080 
TeF6 0.00454 0.00710 0.00077 0.00118 
MoF6 0.01058 0.01718 0.00094 0.00100 
TcF6 0.00723 0.01159 0.00046 0.00067 
l%uF6 0.00539 0.00822 0.00079 0.00126 
RhF~ 0.00497 0.00780 0.00086 0.00133 
WF6 0.00882 0.01430 0.00048 0.00072 
ReF6 0.00691 0.01112 0.00072 0.00113 
OsF6 0.00476 0.00750 0.00105 0.00168 
IrF6 0.00460 0.00722 0.00097 0.00154 
PtF6 0.00457 0.00718 0.00117 0.00188 
UF6 0.00843 0.01369 0.00175 0.00287 
NpF6 0.00675 0.01240 0.00141 0.00232 
PuF~ 0.00618 0.00993 0.00137 0.00224 

where 1% s tands  for the  x--y  dis tance at  the  equi l ibr ium configurat ion.  
The calcula t ion of shrinkages need only  the  values  of mean-square  
perpendicu la r  amp l i t udes  and  in te rnuc lea r  d is tances  a t  t he  equi l ibr ium 
configurat ion.  Very  accura te  values of t he  in te rnuc lear  dis tances  a t  
the  equi l ibr ium configurat ion are, however,  no t  required.  A p p r o x i m a t e  
values  f rom microwave  studies or X - r a y  dif f ract ion s tudies  or any  
o ther  theore t ica l  or exper imenta l  methods ,  if the  results  of e lect ron 
di f f ract ion studies are no t  avai lable ,  will be qui te  sufficient as the  
second-order  t e rm  involving the  calculat ion of the  shr inkage is only  
a minor  correct ion te rm.  The l inear  and  nonl inear  shr inkages were 
ca lcula ted  a t  298 ~ and 500 ~ and  the i r  values  in _~ are  given in 
Table  3 for all the  f if teen hexafluorides.  Al though  the  shr inkages  
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due to the perpendicular displacements of the a tom pMrs for all the 
molecules studied here appear small, they are real. They are to be 
added to the observed nonbonded distances from electron diffraction 
studies at  the appropriate temperatures in order to get the real non- 
bonded distances of the molecule. Although the electron diffraction 
studies have been undertaken for a few of these molecules, the values 
of linear and nonlinear shrinkages have not yet been reported for any 
of these molecules. However, the results of the present study would 
be useful in the future for the interpretation of the results of electron 
diffraction studies iu determining the shrinkages of chemical bonds 
for these hexafluorides. 
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